Skip to content

Silica cycling in the ultra-oligotrophic Eastern Mediterranean Sea

March 27, 2014

Although silica is a key plant nutrient there have been few studies aimed at understanding the Si cycle in the Eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ~ 1 μM, which is unchanging seasonally across the basin was due to the inflow of Western Mediterranean Sea (WMS) water at the Straits of Sicily.

It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S. Adriatic area of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in-situ diagenetic weathering of alumina-silicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si year−1 silicic acid and 16 × 109 mol Si year−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si year−1), riverine (27 × 109 mol Si year−1) and subterranean ground water (9.7 × 109 mol Si year−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109mol Si year−1). This budget shows the importance of rapidly dissolving BSi and in-situ weathering of alumino-silicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.

Krom MD, Kress N, Fanning K, 2014: Silica cycling in the ultra-oligotrophic Eastern Mediterranean Sea, Biogeosciences Discuss., 11, 4301-4334, doi:10.5194/bgd-11-4301-2014. Article.


Comments are closed.

%d bloggers like this: