Skip to content

Environmental controls on the Emiliania huxleyi calcite mass

April 8, 2014

MedSeA 150Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO32−], there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO32−]. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophoreEmiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.

Horigome MT, Ziveri P, Grelaud M, Baumann K-H, Marino G, Mortyn PG, 2013: Environmental controls on the Emiliania huxleyi calcite mass, Biogeosciences Discuss., 10, 9285-9313, doi:10.5194/bgd-10-9285-2013. Article.

Advertisements

Comments are closed.

%d bloggers like this: